
The following pages contain suggestions for the new RADAC. They include ideas expressed by our
re-design team members and by other Wallops employees. Suggestions include a list of standard
functions for the RADAC processor, the idea of identifying data sets with a tracker-vehicle-user
tag, possible setup file organization, possible data structures, function input, function output,
additional control functions, additional programs on the RADAC system.

I’m trying out the presented organization in a Microsoft Development Studio Visual C++ program
called FRED (Filter RE-Design). The primary purpose for creating FRED is to try out different filter
classes.

In creating this presentation, I realized that I don’t have a good idea for how to combine different
data sets into a composite set. Also, the setup files are huge. Suggestions would be appreciated.

Pre-processor
NASA/University
Joint Project

Post-processor
Maybe Sammi
Commercial Off The Shelf (COTS) Product

Processor
NASA Fred Test
Filter RE-Design
Modules maybe connected by
CCTK, COTS Product

RADAC Re-design

Inputs:
Radar Position
TM 6D State, Staging Events
Other
*Read Inputs

Validate Data Transfer:
Mode
Check sum/ Buffer size
Synchronization
Repeated Bits / Not noise
*Edit Invalid Data

Setup:
Input Data Source & Vehicle Ids
Source Data Corrections
Source Coordinates & Earth Models
Output Coordinates & Earth Models
Possible Vehicle Dynamics
User Defined Functions

Check for Stage Change:
Stage Separations
Burns
Destruct
Changes in Acceleration
*Re-initialize filter for stage changes

Filter:
Individual Valid Sources
Composite Sources
Frequency Monitoring

Future State:
Vacuum Impact Prediction
Debris Impact Prediction
Orbital Prediction

As Available Inputs:
Wind Data
Atmospheric Data

Output:
Individual & Composite State
Future State
Error Estimates & Latency
User Defined Information

Data Correction:
Biasing Error Removal
Refraction Correction
Differential Correction
* Estimate Error
Validate Data:
Impossible State Changes
Incompatible with other Sources
*Edit Invalid Data

Coordinate Transformation:
Common Earth Model
Common State Coordinates
Triangulation
*Data & Error Estimates

Best Select:
Precision
Accuracy
Latency
Availability
*Ordered List of Sources

Coordinate Transformation:
User Defined Formats
User Defined Coordinates
User Defined Earth Model

User Defined Functions:
For Each Software Component

RADAC Function Draft

Router:
Direct Data Flow

Close:
Clean Up

Operator:
Direct Operator Commands

Read Input Data

Best Select

Validate Received Bits

Coordinate Transform

Validate Measurement

Fix Known Data Errors

Check for Stage Change

Filter

Calculate Future State

Coordinate Transform

Output Data

Setup

Close

Thread
 #1

Thread
 #1

Thread
 #2

Thread
 #2Composite

Dictionary of New RADAC Terms
User
 A person or group of people requesting data from
 the RADAC.

Vehicle
 The object being tracked.

Tracker
 The source of the vehicle information. Examples
 include a radar, a GPS, an INS.

Input Device
 A port or line connecting to the RADAC, through
 which tracker data arrives.

Data Set
 A series of RADAC inputs, identified by
 (1) an input device
 (2) a tracker
 (3) a vehicle

Thread
 The path one data set follows through a user
 defined list of functions.

Standard Functions
 Each thread has a set of thirteen basic routines.

Extra Functions
 Each thread may have extra routines tacked on
 to the end of each standard function.

Processor Functions

Local
Information

from a
Single Thread

Global
Information

from Multiple
Threads

Decision

Merge

Key

Each RADAC Application Preflight Configuration Includes:

 Only ONE Mission File

 MULTIPLE Tracker Files for Each Device

 MULTIPLE Vehicle Files for Each Tracker

 MULTIPLE User Files for Each Vehicle

 ONE Standard Functions File for Each Thread

 ONE Extra Functions File for Each Thread

Each Data Thread has a four part identification,
 representing of the Thread’s path through the Mission File Tree.

Example: MDDF Line 1, Radar 11, Pegasus Rocket, Range Safety

 Thread ID:

Input Device #
Tracker #
Vehicle #

User #

of Input Devices
Input Device Name #1
 # of Tracker Files for Input Device #1
 Tracker File Name #1 for Input Device #1
 # of Vehicle Files for Tracker File #1 for Input Device #1
 Vehicle File Name #1 for Tracker File #1 for Input Device #1
 # of User Files for Vehicle File #1 for Tracker File #1 for Input Device #1
 User File Name #1 for Vehicle File #1 for Tracker File #1 for Input Device #1
 Standard Files File Name for User #1, Vehicle #1, Tracker #1, Device #1
 Extra Files File Name for User #1, Vehicle #1, Tracker #1, Device #1
 User File Name #2 for Vehicle File #1 for Tracker File #1 for Input Device #1
 Standard Files File Name for User #2, Vehicle #1, Tracker #1, Device #1
 Extra Files File Name for User #2, Vehicle #1, Tracker #1, Device #1
 ...
 Vehicle File Name #2 for Tracker File #1 for Input Device #1
 # of User Files for Vehicle File #2 for Tracker File #1 for Input Device #1
 User File Name #1 for Vehicle File #2 for Tracker File #1 for Input Device #1
 Standard Files File Name for User #1, Vehicle #2, Tracker #1, Device #1
 Extra Files File Name for User #1, Vehicle #2, Tracker #1, Device #1
 User File Name #2 for Vehicle File #2 for Tracker File #1 for Input Device #1
 Standard Files File Name for User #2, Vehicle #2, Tracker #1, Device #1
 Extra Files File Name for User #2, Vehicle #2, Tracker #1, Device #1
 …
 …
 Tracker File Name #2 for Input Device #1
 # of Vehicle Files for Tracker File #2 for Input Device #1
 Vehicle File Name #1 for Tracker File #2 for Input Device #1
 # of User Files for Vehicle File #1 for Tracker File #2 for Input Device #1
 User File Name #1 for Vehicle File #1 for Tracker File #2 for Input Device #1
 Standard Files File Name for User #1, Vehicle #1, Tracker #2, Device #1
 Extra Files File Name for User #1, Vehicle #1, Tracker #2, Device #1
 User File Name #2 for Vehicle File #1 for Tracker File #2 for Input Device #1
 Standard Files File Name for User #2, Vehicle #1, Tracker #2, Device #1
 Extra Files File Name for User #2, Vehicle #1, Tracker #2, Device #1
 …
 Vehicle File Name #2 for Tracker File #2 for Input Device #1
 # of User Files for Vehicle File #2 for Tracker File #2 for Input Device #1
 User File Name #1 for Vehicle File #2 for Tracker File #2 for Input Device #1
 Standard Files File Name for User #1, Vehicle #2, Tracker #2, Device #1
 Extra Files File Name for User #1, Vehicle #2, Tracker #2, Device #1
 User File Name #2 for Vehicle File #2 for Tracker File #2 for Input Device #1
 Standard Files File Name for User #2, Vehicle #2, Tracker #2, Device #1
 Extra Files File Name for User #2, Vehicle #2, Tracker #2, Device #1
 …
 …
 ...

Input Device Name #2
 # of Tracker Files for Input Device #2
 Tracker File Name #1 for Input Device #2
 # of Vehicle Files for Tracker File #1 for Input Device #2
 Vehicle File Name #1 for Tracker File #1 for Input Device #2
 # of User Files for Vehicle File #1 for Tracker File #1 for Input Device #2
 User File Name #1 for Vehicle File #1 for Tracker File #1 for Input Device #2
 Standard Files File Name for User #1, Vehicle #1, Tracker #1, Device #2
 Extra Files File Name for User #1, Vehicle #1, Tracker #1, Device #2
 User File Name #2 for Vehicle File #1 for Tracker File #1 for Input Device #2
 Standard Files File Name for User #2, Vehicle #1, Tracker #1, Device #2
 Extra Files File Name for User #2, Vehicle #1, Tracker #1, Device #2
 ...
 Vehicle File Name #2 for Tracker File #1 for Input Device #2
 # of User Files for Vehicle File #2 for Tracker File #1 for Input Device #2
 User File Name #1 for Vehicle File #2 for Tracker File #1 for Input Device #2
 Standard Files File Name for User #1, Vehicle #2, Tracker #1, Device #2
 Extra Files File Name for User #1, Vehicle #2, Tracker #1, Device #2
 User File Name #2 for Vehicle File #2 for Tracker File #1 for Input Device #2
 Standard Files File Name for User #2, Vehicle #2, Tracker #1, Device #2
 Extra Files File Name for User #2, Vehicle #2, Tracker #1, Device #2
 …
 …
 Tracker File Name #2 for Input Device #2
 # of Vehicle Files for Tracker File #2 for Input Device #2
 Vehicle File Name #1 for Tracker File #2 for Input Device #2
 # of User Files for Vehicle File #1 for Tracker File #2 for Input Device #2
 User File Name #1 for Vehicle File #1 for Tracker File #2 for Input Device #2
 Standard Files File Name for User #1, Vehicle #1, Tracker #2, Device #2
 Extra Files File Name for User #1, Vehicle #1, Tracker #2, Device #2
 User File Name #2 for Vehicle File #1 for Tracker File #2 for Input Device #2
 Standard Files File Name for User #2, Vehicle #1, Tracker #2, Device #2
 Extra Files File Name for User #2, Vehicle #1, Tracker #2, Device #2
 …
 Vehicle File Name #2 for Tracker File #2 for Input Device #2
 # of User Files for Vehicle File #2 for Tracker File #2 for Input Device #2
 User File Name #1 for Vehicle File #2 for Tracker File #2 for Input Device #2
 Standard Files File Name for User #1, Vehicle #2, Tracker #2, Device #2
 Extra Files File Name for User #1, Vehicle #2, Tracker #2, Device #2
 User File Name #2 for Vehicle File #2 for Tracker File #2 for Input Device #2
 Standard Files File Name for User #2, Vehicle #2, Tracker #2, Device #2
 Extra Files File Name for User #2, Vehicle #2, Tracker #2, Device #2
 …
 …
 ...
...

Example Mission File

A Mission File is a Tree
 of Other File Names.

Read Input Data

Validate Received Bits

Coordinate Transform

Validate Measurement

Fix Known Data Errors

Check for Stage Change

Filter

State Calculations

Coordinate Transform

Output Data

Best Select

Input Format

Possible Verifications

Tracker Coordinates

Tracker Limits

Known Errors

Error Estimate

Filter Coordinates

Vehicle Limits

Possible Checks

Filter Model

Filter Coordinates

Required Output

Output Coordinates

Output Format

Optimum Qualities

End of Input

End of Validate Bits

End of Transform

End of Validate Value

End of Error Correct

End of Stage Check

End of Filter

End of State Calculate

End of Transform

End of Output

End of Best Select

Content of Five Input File Types (Excluding the Mission File):

Close End of Close

Setup End of Setup

Tracker(s) Vehicle(s) User(s) Standard Functions
 for Thread(s)

Extra Functions
 for Thread(s)

Data Structures for Archival on the
Pre-processor Storage Unit

• SCHEME Structure
– Stored each time the set up function runs
– Contains the MISSION substructure
– Contains THREAD substructures

 Under each THREAD are substructures for each file, TRACKER,
VEHICLE, USER, STANDARD_FUNCTIONS,
EXTRA_FUNCTIONS

• SOURCE Structure
– Stored each time the read data function runs
– Contains all information received by the input device

• HUMAN Structure
– Stored each time an operator interacts with RADAC
– Contains the states of all possible operator inputs

• RADAC Structure
– Stored each time the output data function runs
– Contains substructures to hold data (excluding SCHEME,

SOURCE, and HUMAN data) transferred between functions

• EXTRA Structure
– Stored each time the output data function runs
– Contains arrays of user defined values

Data Structures for Archival on the
Post-processor Storage Unit

Setup Function

• Initiation: Human specifies a mission file
• Input: mission file name
• Function: Read the specified mission file and its

associated files, to fill the SCHEME structure.
Archive the SCHEME structure. Initialize
specified functions and RADAC variables.

• Output: SCHEME, RADAC, notification of
completion to the operator

Input Function

• Initiation: Input device senses data arrival.
• Input: external data,

SCHEME.TRACKER.INPUT_FORMAT
• Function: Read the external data, to fill the

SOURCE structure. Archive the SOURCE
structure. Send SOURCE to the data transfer
validation function.

• Output: SOURCE

Validate Transfer Function

• Initiation: Call from router after the input function
ends

• Input: SOURCE,
SCHEME.TRACKER.VERIFICATIONS

• Function: Validate data transfer. Set RADAC
structure’s state variable. Decide if data is worth
further processing.

• Output: RADAC.data_state_i

Data Correction Function

• Initiation: Call from router after validate transfer
function completion with good
RADAC.data_state_i

• Input: SOURCE,
SCHEME.TRACKER.KNOWN_ERRORS

• Function: Correct the SOURCE data for know
errors. Store the result in a RADAC substructure,
called REFINED.

• Output: RADAC.REFINED

Validate Values Function

• Initiation: Call from router after data correction
function completion

• Input: RADAC.REFINED,
SCHEME.TRACKER.LIMITS,
SCHEME.VEHICLE.LIMITS

• Function: Validate data values based on tracker
and vehicle limitations. Revise RADAC
structure’s state variable. Decide if data is worth
further processing.

• Output: RADAC.data_state_i

Transform Tracker Function

• Initiation: Call from router after validate values
function completion with good
RADAC.data_state_i

• Input: RADAC.REFINED,
SCHEME.TRACKER.COORDINATES,
SCHEME.VEHICLE.COORDINATES

• Function: Transform from the tracker coordinates
to the filter coordinates.

• Output: RADAC.MEASUREMENT

Staging Check Function

• Initiation: Call from router after transform tracker
function completion

• Input: RADAC.MEASUREMENT,
SCHEME.VEHICLE.STAGING_CHECKS

• Function: Look for duplicated indications that a
stage change is occurring. Upon sensing a stage
change, set the filter’s filter_state_i variable to re-
initialize.

• Output: RADAC.filter_state_i

Filter Function

• Initiation: Call from router after staging check
function completion

• Input: RADAC.MEASUREMENT,
RADAC.filter_state_i,
SCHEME.TRACKER.ERROR_ESTIMATES,
SCHEME.VEHICLE.FILTER_MODEL

• Function: Filter the measurement data.
• Output: RADAC.FILTERED

Transform Filter Function

• Initiation: Call from router after filter function
completion

• Input: RADAC.FILTERED,
SCHEME.VEHICLE.COORDINATES,
SCHEME.USER.COORDINATES

• Function: Transform from the filter coordinates to
the output coordinates.

• Output: RADAC.PROCESSED.PRESENT

Future State Function

• Initiation: Call from router after transform filter
function completion

• Input: RADAC.FILTERED,
SCHEME.USER.REQUIRED_STATE

• Function: Preformed impact predictions or orbital
predictions on the filtered data, to meet user
prediction requirements.

• Output: RADAC.PROCESSED.FUTURE

Best Select Function

• Initiation: Call from router after future state
function completion

• Input: RADAC.PROCESSED.PRESENT,
RADAC.PROCESSED.FUTURE,
SCHEME.USER.OPTIMIZE

• Function: Order all threads for the defined user,
based on user optimization criteria.

• Output: RADAC.PROCESSED.OPTIMIZE

Output Function

• Initiation: Call from router after best select
function completion

• Input: RADAC
• Function: Pack each user’s

RADAC.PROCESSED thread structures.
Distribute the data to the users. Archive the entire
RADAC structure.

• Output: RADAC.PROCESSED data packet
leaving the RADAC, archived RADAC data

Close Function

• Initiation: Human initiates close command
• Input: SCHEME
• Function: Gracefully complete the application.

End all functions. End archival. Close all files.
Clear all memory.

• Output: notification of completion to the operator

Extra Function(s)

• Initiation: notification from the router
• Input: SCHEME, SOURCE, HUMAN, RADAC,

EXTRA
• Function: User defined
• Output: SCHEME, SOURCE, HUMAN, RADAC,

EXTRA

Router Function

• Initiation: notification of completion of any other
function

• Input: SCHEME, completed function return ID
• Function: Call functions in the sequence specified

by the thread’s SCHEME, while the
RADAC.data_state_i variable indicates good data.
Combines and splits threads.

• Output: call to next function

Operator Function

• Initiation: operator input to the RADAC
• Input: HUMAN, SCHEME, RADAC
• Function: Update the appropriate data based on

the state change in the HUMAN structure.
• Output: SCHEME, RADAC

New Available Function

• Initiation: notification that a replacement file is
available

• Input: HUMAN
• Function: Obtain replacement item information

from the HUMAN.NEW_AVAILABLE structure.
Check the new data for errors. Replace the old
with the new. Verify replacement.

• Output: notification that the replacement was or
was not completed successfully

SCHEME
•MISSION

•mission_file_name_c[maximum_string_size]
•THREAD[# of threads]

•thread_ID_c[maximum string size]
•TRACKER

•INPUT_FORMAT
•format_ID_c[maximum_string_size]

•VERIFICATIONS
•number_of_verifications_i
•CHECK[# of verifications]
 • verification_ID_c[maximum_string_size]
 • values_i[# of verification integers]
 • values_d[# of verification doubles]
 • values_s[maximum string size][# of verification strings]

•KNOWN_ERRORS
•number_of_errors_i
•ERROR[# of known errors]
 • error_ID_c[maximum_string_size]
 • values_i[# of error integers]
 • values_d[# of error doubles]
 • values_s[maximum string size][# of error strings]

•LIMITS
•number_of_limits_i
•TEST[# of limits]
 • limit_ID_c[maximum_string_size]
 • values_i[# of limit integers]
 • values_d[# of limit doubles]
 • values_s[maximum string size][# of limit strings]

Stored Structures

•COORDINATES
•number_of_coordinates_i
•FRAME[# of coordinates]
 • coordinate_ID_c[maximum_string_size]
 • values_i[# of coordinate frame integers]
 • values_d[# of coordinate frame doubles, ex. Reference Location]
 • values_s[maximum string size][# of coordinate frame strings]

•ERROR_ESTIMATES
•number_of_estimates_i
•QUALITY[# of estimates]
 • estimate_ID_c[maximum_string_size]
 • values_i[# of estimate integers]
 • values_d[# of estimate doubles]
 • values_s[maximum string size][# of estimate strings]

•VEHICLE
•LIMITS

•number_of_limits_i
•TEST[# of limits]
 • limit_ID_c[maximum_string_size]
 • values_i[# of limit integers]
 • values_d[# of limit doubles]
 • values_s[maximum string size][# of limit strings]

•COORDINATES
•number_of_coordinates_i
•FRAME[# of coordinates]
 • coordinate_ID_c[maximum_string_size]
 • values_i[# of coordinate frame integers]
 • values_d[# of coordinate frame doubles, ex. Reference Location]
 • values_s[maximum string size][# of coordinate frame strings]

Stored Structures

•STAGING_CHECKS
•number_of_checks_i
•CHECK[# of checks]
 • check_ID_c[maximum_string_size]
 • values_i[# of check integers]
 • values_d[# of check doubles]
 • values_s[maximum string size][# of check strings]

•FILTER_MODEL
•model_ID_c[maximum_string_size]

•USER
•COORDINATES

•number_of_coordinates_i
•FRAME[# of coordinates]
 • coordinate_ID_c[maximum_string_size]
 • values_i[# of coordinate frame integers]
 • values_d[# of coordinate frame doubles, ex. Reference Location]
 • values_s[maximum string size][# of coordinate frame strings]

•REQUIRED_STATE
•number_of_requirements_i
•requirement_ID_c[maximum string size][# of requirements]

•OPTIMIZE
•number_of_qualities_i
•QUALITY[# of coordinates]
 • quality_ID_c[maximum string size]
 • quality-weight_d

•STANDARD_FUNCTIONS
•PROCESSOR[# of standard functions, in standard processing order]

•standard_function_ID_c[maximum string size]
•function_name_c[maximum string size]

•EXTRA_FUNCTIONS
•USER_DEFINED[# of user defined functions]

•standard_function_ID_to_follow_c[maximum string size]
•function_name_c[maximum string size]

Stored Structures

HUMAN
•NEW_AVAILABLE

•affected_item_ID_c[maximum string size]
•replacement_name_c[maximum string size]
•replacement_location_c[maximum string size]

•INITIATE_SETUP
•mission_file_name_c[maximum string size]

•INITIATE_CLOSE
•mission_file_name_c[maximum string size]

•REMOVE_EXTRA_FUNCTION
•function_name_c[maximum string size]

•ADD_EXTRA_FUNCTION
•standard_function_ID_to_follow_c[maximum_string_size]
•function_name_c[maximum string size]

•CHANGE_STANDARD_FUNCTION
•standard_function_ID_c[maximum_string_size]
•function_name_c[maximum string size]

•FORCE_DATA_STATE
•new_data_state_i
•hold_state_flag_I (FALSE = one time, TRUE = until close)

•FORCE_FILTER_STATE
•new_filter_state_i
•hold_state_flag_I

•THREAD_CONTROL
•thread_ID_c[maximum string size] (specific or determined from tracker, vehicle, & user types)
•tracker_name_c[maximum string size] (specific or “all” of the specified vehicle & user types)
•vehicle_name_c[maximum string size] (specific or “all” of the specified tracker & user types)
•user_name_c[maximum string size] (specific or “all” of the specified tracker & vehicle types)
•include_flag_i (FALSE = take out of system, TRUE = put in system, default is TRUE)

Stored Structures

* The HUMAN structure should include substructures for
every control/command the operator can alter/enter.

* The HUMAN structure should be stored with
a time tag, to allow re-play capability.

RADAC
•data_state_i
•filter_state_i
•REFINED

•state_vector_d[maximum model degree][maximum coordinate axes]
•time_tag_d

•MEASUREMENT
•state_vector_d[maximum model degree][maximum coordinates axes]
•time_tag_d

•FILTERED
•state_vector_d[maximum model degree][maximum coordinates axes]
•time_tag_d

•PROCESSED
•PRESENT

•state_vector_d[maximum model degree][maximum coordinates axes]
•time_tag_d

•FUTURE
•state_vector_d[maximum model degree][maximum coordinates axes]
•time_tag_d

•OPTIMIZE
•quality_i

Stored Structures

The standard product for the user

Stored Structures

SOURCE
•values_i[# of source integers]
•values_d[# of source doubles]
•values_s[maximum string size][# of source strings]

EXTRA
•values_i[# of user defined integers]
•values_d[# of user defined doubles]
•values_s[maximum string size][# of user defined strings]

An additional product for the user

* To understand the SOURCE, you have to have format
information from the SCHEME. Both should be stored
on the same external unit.

* Dynamic memory allocation may save significant space.

Additional Programs
Setup Program
The SCHEME structure is large. It is filled using the setup files. However, setup does not have to
be labor intensive. TRACKER, VEHICLE, USER, and even MISSION files can be defined once and
re-used. The creator of these files, should use a setup program that lists necessary information
and possible selections. The setup program can order the information in an ASCII text file.

Each file type should have it’s own directory. Each file should have a standard, descriptive name.

The setup program should be separate from the RADAC program, but it should reside on the same
system. Running the setup program from a remote terminal should be possible.

Test Program
Insuring that all portions of the code are tested is a must for accepting system changes. The
more the system can change, the more the system needs testing. A test program should
accelerate this process. It should search for code inconsistencies. It should contain archived
setups with archived results, and it should be capable of comparing new results to the old results.

Replay Program
This program should read the user products (RADAC.PROCESSED and EXTRAS) from the archive.
It should re-send this data, through the output function, at a rate matching the change in the data
time tags.

Archive Extract Program
This program should read operator defined data from archives and store the data in a file. The
file format one of a limited number of choices, selected by the operator. Some post processing
routines may be available. Data reduction can be performed on a separate system, using the
extracted file.

